Algebraic Number Theory Mid-Term

March 5 2014

Please do not cheat. Good Luck! This exam is of 30 marks. There are 6 questions	s. (30)
1. Prove that the set of algebraic numbers \mathbb{A} is a field.	(4)
2a. Compute a discriminant of $\mathbb{Q}(\sqrt[3]{2})$. 2b. Compute the discriminant of $\mathbb{Q}(\sqrt{21})$.	(3) (3)
3. Give an example of a ring R with the following properties — if possible. If n why.	ot, explain
• Not every irreducible is prime.	(2)
• Not every prime is irreducible.	(2)
• Not every prime ideal is generated by at most 2 elements.	(2)
• A UFD which is not a PID.	(1)
4. Is the group of units in $\mathbb{Z}(\sqrt{5})$ finite or infinite? Why?	(3)
5a. Factorize 18 in $\mathbb{Z}[\sqrt{-17}]$ in as many ways as possible. 5b. Factorize (18) in $\mathbb{Z}[\sqrt{-17}]$ in to prime ideals.	(3) (3)
 6. Find all ideals in Z[√2] containing the ideal a. (7) b. (5) 	(2) (2)